TASTE DISCOVERY

Study of the basic tastes, and how these are detected by the tongue,

is an evolving field.

ORGAN

Circumvallate

Mucus-secreting gland

papillae

The tongue contains four types of papillae. Circumvallate, fungiform and foliate papillae contain taste buds, whereas filiform papillae detect only the texture of food.

> b C

Each taste bud is an onion-like

structure packed with 50 to

100 taste cells, anatomically

for sweet, bitter, umami and possibly salty tastes; type III

for sour; type I are probably

supporting cells. Type IV are

suspected to be stem cells

that supply new taste cells

classified into four types. Type II cells contain receptors

1901

D. Hänig publishes a paper containing data on taste sensitivity in different regions of the tongue. The data are later misinterpreted, giving rise to the myth of the 'tongue map'

Filliform Fungiform

papillae

Foliate

Taste bud

Taste cell

types I, II, III

Nerve fibres

Taste cell type IV

papillae

350 BC Aristotle writes about the basic tastes, sweet and bitter, which can be modified, he says, by salty and acidic.

900

350 BC

1908

Fifth basic taste discovered: savoriness, described as umami, which is conferred by glutamate.

920

910

1931-1932

Geneticists confirm findings about sensitivity to bitter tasting PTC and discover non-tasting is a recessive genetic trait 2,11.

1931

Bitter taste sensitivity found to vary among humans1.

930

1940

950

1960

970

980

990

2000

1939

Geneticists show that chimpanzees, like humans, vary in their ability to perceive the bitterness of PTC (see 'The lost appetites', page S16).

Discovery of gustducin, a taste cell-specific

1992

G-protein, in the taste buds. Gustducin is later shown to mark bitter, umami and sweet cells13.

RECEPTORS

every two weeks.

CELLS

Sweet, umami and bitter receptors belong to the superfamily of G-protein coupled receptors. ENaC, the receptor for sodium-salt taste, is an ion channel. Less is known about PKD2L1, but taste cells expressing it respond to the presence of protons (H+), a breakdown product from acids

Connective tissue

2000 / BITTER

First taste sensors, the T2R bitter receptors, discovered3.

The sweet receptor is discovered⁵: a combination of T1R2 + T1R3.

2002 / UMAM

Amino acid detector. T1R1 + T1R3, identified6,

2006 / SOUR

Cells for sour taste discovered, identified by PKD2L1 (refs 4-7).

ENaC identified as the sodium-salt taste receptor9.

2002

Bitter taste receptors found14 in the gastrointestinal tract.

2005

Sweet taste receptor found15 in the gastrointestinal tract.

2009

The Car4 receptor, which senses the carbon dioxide in fizzy drinks, is found on sour cells8.

